Inside the ext2 Filesystem & Thoughts on Writing a
Filesystem Driver

Ziqin Li
System Research Association@Sichuan University

October 24, 2024

Inside the ext2 Filesystem & Thoughts on Wr October 24, 2024 1/15

© oxt2 filesystem

© Thoughts on Writing a Filesystem Driver

Inside the ext2 Filesystem & Thoughts on Wr October 24, 2024 2/15

ext? filesystem

Basic Filesystem Structure

Disk
Partition 0 Partition 1 Partition 2
T “File system =
Boot Block Block Block Block
Sector] Group 0 Group 1 Group 2 Group N
" Block group
Super | Block Group | Block Inode
Block | Descriptor | Bit Map | Bit Map | 'node table Data blocks

Figure: The filesystem is divided into several block group (inspired by FFS)

Inside the ext2 Filesystem & Thoughts on Wr

October 24, 2024

3/15

Superblock

Robustness

Robustness. Many features designed for fsck.
How to check, when to check and what if check fails?

@ last_check

@ check_interval
@ mount_count
@ max_mount_count
@ state

@ errors__behavior

Duplicated superblock and group descriptor tables. (Every block group
has one, except sparse_super is set)

Read https://github.com/Tiger1218/imoutOS/blob/devel-ext2-low-layer-
implementation /fs/ext2/ext2.h for details.

Inside the ext2 Filesystem & Thoughts on Wr October 24, 2024 4/15

Superblock

Extensibility

ext2 -> ext3 -> ext4: backward-compatible
Superblock:

o s_feature_compat
@ s_feature_incompat
@ s_feature_ro_compat

Enough free to add/delete properties.

Example: HTree, xattr, journal (even you can directly use ext2 driver to
read a ext3 filesystem)

Inside the ext2 Filesystem & Thoughts on Wr

October 24, 2024 5/15

Block Group Descriptor Table

block bitmap

inode bitmap

inode table

free inodes count

free blocks count

used dir count (Why here?)

Also duplicated, but it requires a lot of blocks for storing it.

Inside the ext2 Filesystem & Thoughts on Wr

October 24, 2024

6/15

ext? filesystem

inode

mode (UGOXRWX and filetype)

a/c/m/d time (opened, change metadata, modify content, delete)
uid/gid

link__count

size by block

flags

xattr blocks

block (12 x direct, 1 x 2-level indirect, 1 x 3-level indirect, 1 x 4-level
indirect)

Inside the ext2 Filesystem & Thoughts on Wr October 24, 2024 7/15

ext? filesystem

inode
Explaination by Picture

inode

PErmISSIons,
timestamps,
ate,

il tadat; D
ile metadata
L]
size, owner, .
:
L]

direct —

direct

direct

— ++— Metadata —

direct

direct

direct

direct

direct

direct

direct

direct

s —

direct —
single indirect
double indirect 4
triple indirect

«—— 15 Pointers

Inside the ext2 Filesystem & Thoughts on Wr October 24, 2024 8/15

ext? filesystem

dentry
Linked List

struct dir_entry {

uint32_t inode_num;

uintl6_t record_len;

uint8_t filename_len;

uint8_t file_type;

char filename [EXT2 FILENAME LEN];
} __packed;

Enable dir_index feature on ext2 filesystem to enable HTree Index
instead of linked list. Become default on ext2 ver0+, and ext3.

Inside the ext2 Filesystem & Thoughts on Wr October 24, 2024 9/15

Abstraction

Think before code.

struct block_group_descriptor * bgdget(uint32_t bgnum){
uint32_t block_size = 1024 << sb_ext2.log_block_size;
uint32_t bgs_per_block = block_size / sizeof(struct block.
uint32_t blockid_to_read = bgnum / bgs_per_block;
struct block_group_descriptor * bgt = malloc(block_size);
read_from_block(blockid_to_read, bgt);
return bgt[bgnum % bgs_per_block];

Use abstract to simplify the code instead of using procedural statement to
damage the readability.

Inside the ext2 Filesystem & Thoughts on Wr October 24, 2024 10/15

Thoughts on Writing a Filesystem Driver

Decouple

read_from_bytes(1024, (char *)&sb_ext2,
sizeof (struct super_block));

Superblock is different from the superblock. You never wanna use 1024
<< sb_ext2.log_block_size all the time.

Inside the ext2 Filesystem & Thoughts on Wr October 24, 2024 11/15

Thoughts on Writing a Filesystem Driver

Decouple

Only with the abstraction we can layer the problem.
Case study #1 : cache.

@ Should | cache the inode/dentry, when and what size?
@ Should | cache the block groups’ inode table and bitmap, when?
@ Should | cache data blocks / files, when and what size?
@ Should | cache the r/wblock result, when?
Case study #2 : Get the inode
@ How to deal with the block group?
@ Should | turn check_inode from bitmap a function?

o If | want to cache the data within, how should we build a connection
between it and inodes?

Inside the ext2 Filesystem & Thoughts on Wr

October 24, 2024 12/15

Thoughts on Writing a Filesystem Driver

Decouple

Solution

@ Each objects having abstraction should be cached.

@ The cache process and invalidate process and whatever to keep the
consistency should be implemented as a set of functions specify to the
abstraction.

@ So should the functional functions. And to keep codes clean, assign
files with the abstractions.

@ Properly handle the relations between the objects.

Congrats! You re-invent the OOP (Object Oriented Programming).
You may want to check the Virtual Filesystem Switch mechanism for a
detailed explaination.

Inside the ext2 Filesystem & Thoughts on Wr October 24, 2024 13/15

Thoughts on Writing a Filesystem Driver

References

@ M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry, “A fast file
system for unix,” ACM Transactions on Computer Systems (TOCS),
vol. 2, no. 3, pp. 181-197, 1984.

[d R. Card, “Design and implementation of the second extended
filesystem,” in Proc. First Dutch International Symposium on Linux,
Dec. 1994, 1994.

@ M. Cao, T. Y. Tso, B. Pulavarty, S. Bhattacharya, A. Dilger, and
A. Tomas, "“State of the art: Where we are with the ext3 filesystem,”
in Proceedings of the Ottawa Linux Symposium (OLS), pp. 69-96,
Citeseer, 2005.

Inside the ext2 Filesystem & Thoughts on Wr October 24, 2024 14 /15

hts on Writing a Filesystem Driver

Thank You!

Inside the ext2 Filesystem & Thoughts on Wr October 24, 2024 15/15

	ext2 filesystem
	Thoughts on Writing a Filesystem Driver

